Два американских исследователя утверждают, что сумели приспособить алгоритм расчета авторитетности интернет-страницы, используемый поисковой системой Google, для предсказания будущих лауреатов Нобелевской премии. Препринт статьи ученых доступен на сайте arXiv.org.
Нобелевскую премию присуждают тем ученым, чьи работы оказали наибольшее влияние на развитие науки. В настоящее время не существует единого способа ранжировать работы исследователей по этому критерию. Одним из факторов при оценке значимости научной работы является ее цитируемость — количество ссылок на работу в статьях других ученых.

У такого способа есть целый ряд недостатков. Так, ссылка на работу в более авторитетном журнале должна вносить больший «вклад» в общую значимость работы, чем ссылка в малоизвестном журнале. Новаторские работы цитируют реже, так как специалистов в новой области меньше, чем в устоявшихся. Кроме того, в разных областях знаний среднее количество ссылок на работы сильно разнится (например, на статьи, посвященные биологии, ссылок больше, чем на физические статьи). Хотя в правомерности этого критического аргумента недавно усомнились.

picture1

По оси абсцисс число ссылок на работы, по оси ординат — значимость работ "по версии" PageRank. Жирные черные точки соответствуют авторам десяти самых значимых работ. Изображение авторов исследования

Сергей Маслов из Брукхевенской национальной лаборатории и Сидни Реднер (Sidney Redner) из Бостонского университета утверждают, что с помощью сервиса PageRank им удалось обойти все эти трудности. При составлении рейтинга исследователи не только подсчитывали количество ссылок на конкретную работу, но также учитывали значимость журнала, в котором была ссылка (так называемый импакт-фактор).

Используя PageRank, Маслов и Реднер проранжировали свыше 353 тысяч работ, опубликованных в физических журналах с 1853. Большинство ученых, работы которых попали в топ-10, являются Нобелевскими лауреатами. Самыми значимыми оказались работы Кабиббо (Cabibbo), идеи которого разрабатывали лауреаты последней Нобелевской премии по физике.

Авторы работы считают, что данные, полученные с помощью PageRank и примененного ими алгоритма, позволяют адекватно оценивать важность научных работ и с большой долей вероятности предсказывать Нобелевских лауреатов.

источник: http://www.lenta.ru/news/2009/01/21/pagerank/